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Yellow perch oogenesis in North America

Oocyte in the process of hydration,
Oil globule (GL), pervitelline space
(EPV), germonal cell (PG).

Lipid dropletes (gl), yolk
Vesicles (v), nucleus (N).
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(Eldridge et al. 1981.TAFS 110:111)

Dil globule utilization in striped bass larvae
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m bladder inflation process and physical conditions

ompanying the successful event in walleye (Regier and
erfelt 2001. J.Fish Biol. 53:93)
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Are there alternative strategies for larvae of different fish
species that do not rely on maternal phospholipids?

Sargent J. et al. 1999. Aquaculture 179: 217

“Marine fish phospholipids: the gold standard in larval fish
nutrition”

- Fish larvae have a limited ability to biosynthesise phospholipids de
novo but can exchange fatty acids within and between PL and TG.

- Dietary phospholipids can, in principle, be utilized (assimilated)
unchanged.

- ldeal larval diet is the one that matches yolk sac and natural
exogenous diet lipid composition.



of fatty acid (specifically DHA, C22:6n3) composition in
n embryo viability in common snook (Atlantic, Florida
-Roca et al. 2009. Aquaculture 287: 335).
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The role of wax esters in marine food chains,
phytoplankton, copepods, fish (Benson 1975. Scientific American
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Hydrophobic surtace

s (1 L

triglycerides and = I'=
acpids| 111177l ) 1777777
ophobic lipids in the larval fish (swim bladder
1eumatic duct) will facilitate inflation by acting

ctants (lubricants) and preventing inner surface
1d collapsing.




omparative aspects of lipid mobilization, transport and
tilization (digestion) — does “arowana” model applies to wax
asters in “oil globule” possessing larval fish?

Mobilization of wax esters contained in
yolk oil globule may proceed through
sarlier described “endocytotis” of
nicroparticles (decreased polarity

pared to TG) into circulation....
Jaroszewska, Dabrowski 2009. Anatomical Reco

292: 1745.



e fate of dietary lipids, synthesis, transfer, accumulati
d metabolism in fish (Wiegand 1996. Reviews in Fisheries)
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Materials and Methods



Experimental Design

h origin Erie Erie
Domestic Domestic Domestic

50 days 80 days 110 days
@ 4°C @ 4°C @ 4°C

Good Poor




Laboratory Experiments

e Fall 2011 — Winter duration treatments began
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ethods of analysis:

id classes
acid composition

ation of lipids into phospholipids (PL)
lipids (NL)

‘the neutral lipid class




Lipid extraction and separ ation ,

1. Homogenization

Chloroform
M ethanol
LY Chloroforr
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Lipid classes extraction and separ ation

1. Folch et al. (1957)
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Lipid classes and fatty acid composition of perch food (fathead
minnows) offered in the course of gametogenesis 2011-2012

Oct. 13* Nov.11* Jan. 20t Feb. 2%

Total Lipids 4.1 3.8 2.7 3.4
Neutral Lipids 69 67 58 64
Phospholipids 31 33 42 36

Linoleic C18:2 (n6) 0.05 0.02 0.02 0.07
Linolenic C18:3 (n3) 0.3 0.5 0.3 0.6
Arachidonic C20:5 (n3) 7.7 7.6 2.4 3.7
EPA C20:4 (n6) 0.01 0.03 0.03 0.02
DHA C22:6 (n3) 7.3 9.6 2.2 3.1

n3 / n6 9.4 13.2 6.5 4.3

* St. Mary’s State Fish Hatchery (ODOW)
T Jones Fish Hatchery (Cincinnati, OH)
¥ R&R Sports Headquarters (Columbus, OH)
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Linoleic acid 18:2n6
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Linoleic acid 18:2n6

females:

eclining hatching success as fatty acid increases
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Linolenic 18:3n3

females:

eclining hatching success as fatty acid increases
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“Mead” acid 20:3n9 ?
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C 22:0 (saturated)
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Docosahexaenoic (DHA) 22:6n3

estic females:

eclining essential fatty acid as winter duration increase
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DHA C22:6n3

females:

eclining hatching success as DHA fatty acid increases
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iated.

| PUFA

clusions

anded period of low water temperatures results in increased
of degree-days, thermal exposure at low temperatures
ances stress on membranes integrity and lipid oxidative casc

ahexaenoic acid (C22:6n3)
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Ovulated, hydrated (unfertilized) and freeze-dried
eggs of yellow perch. Domesticated, fed commercial
(Aquamax) diet. Collected in June 2013 (n=6 females)




covery of the lipid classes after separation of NL fractio
yellow perch egg lipids on ion-exchange column

Recover
Total Ioad WE1 PL y

[%] [%]

rate
[%]

LE YP eggs 0.300 74.64 : : 1.48 34.09

Ovulated YP
eggs

0.330 64.93 : : 1.43 76.89




Fatty acid
\position of
(NL) and
action

NL fraction

C14:0 0.40
Cl14:1 0.14
C16:0 5.16

C16:1[n-9] 23.51
C18:0 0.01
C18:1[n-9¢] 25.27
C18:1[n-7] 2.35
C18:2[n-6¢]
C18:3[n-3]
C20:0 #1 -

PL fracti
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ke, transport and metabolism of lipids in the life ¢
llow perch

Gut Muscle

orovide NL and
Synthesis of NL and PL
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Final conclusions

ort winter for gametogenesis does not mean bad for
reproduction

winter means good for essential fatty acid profil

sure in low temperat




Final conclusions - 2

Lipid and fatty acid profiles in ovulated eggs show great
promise in predicting viability of embryos and (perhaps) larvae

Extensive transformation of lipid classes takes place following
ovulation, endogenous and mixed feeding phases

Wax esters may provide advantages in respect to water/ion
balance, microbial detachment, swim bladder inflation in early
life of freshwater fish

Enrichment of the first larval diets with specific wax esters
should be examined.
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ct of lipid and fatty acid composition on embryo

ility of Japanese eel (Anguilla japonica) (Furuita et al. 2
Biol. 69: 1178)
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Results on a per egg basis
mple using caloric density:

Energy density declines as winter duration increases
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Lipid classes and fatty acid composition of perch food (fathead
minnows) offered in the course of gametogenesis 2011-2012

Vean % + StdErr

Total Lipids 3.5% 0.3
Neutral Lipids 65% 2.5
Phospholipids 35% +2.4

Linoleic C18:2 (n6) 0.04 % = 0.01

Linolenic C18:3 (n3) 0.40 % = 0.07
Arachidonic C20:5 (n3) 54% 1.4

EPA C20:4 (n6) 0.02 % = 0.09
DHA C22:6 (n3) 55% 1.7

n3 /n6 8.3:1.0



Recovery of the lipid classes after separation
of NL fraction of yellow perch egg lipids
on ion-exchange column




Lipids recovery after ion-echange
eparation of NL from yellow perch eg




mulative water temperature from initiation of
etogenesis (October) to ovulation (degree-days, °D)
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Results on a per egg basis

ple using caloric density:

Hatching success declines with increasing energy d

Fit Plot for M_PCT_HATCHED
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Results on a per egg basis

when results are scaled to calories per egg:
atching success increases as the calories per egg increas

s is because eggs/q (of ribbon) also decreased with
asing winter duration.

ough the density declines, fewer eggs/g tran
ries per eqgq.

Fit Plot for M_PCT_HATCHED
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e of divergence among teleost fishes
et al. 2011. PLOS )
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